拉力、压力和万能试验机负荷示值误差 测量结果的不确定度评定

绍兴市质量技术监督检测院 黄梁

【摘要】结合工作实践情况,针对拉力、压力和万能试验机负荷示值误差测量结果的 不确定度进行分析

【关键词】负荷示值误差 测量结果 不确定度评定

一、概述

- 1. 测量方法:依据 JJG139-2014《拉力、压力和万能试验机检定规程》。
- 2. 环境条件: 温度($10\sim35$) ℃, 检定过程中温度波动不大于 2 ℃/h。
- 3. 测量标准: 0.3 级标准测力仪,相对扩展不确定度 U₉₅=0.15%,年稳定度为± 0.3%。
- 4. 被测对象: 拉力、压力和万能材料试验机,测量范围 2. 5kN~10MN,相对最大允许误差为±1.0%。
- 5. 测量过程:在规定环境条件,使用试验机对标准测力仪施加负荷至测量点,可得到与标准力值相对应的试验机负荷示值,该过程连续进行 3 次,以 3 次示值的算术平均值减去标准力值,即得该测量点试验机的示值误差。
- 6. 评定结果的使用,在符合上述条件且测量范围在 1000kN 以下的试验机,可直接使用本不确定度的评定结果,其他可使用本不确定度的评定方法。
 - 二、建立数学模型

三、输入量的标准不确定度评定

1. 输入量 \overline{F} 的标准不确定度 $u(\overline{F})$ 评定

输入量 \overline{F} 的不确定度来源主要是试验机的重复性,采用 A 类方法进行评定。

对一台 1000kN 的试验机,选择满量程为 20%作为测量点,连续测量 10 次,得到测量列如表 1 所示。

序号 1 2 3 4 5 6 7 8 9 10 (i)示值 200.4 200.6 200.4 200.8 200.6 200.4 200.6 200.8 200.8 200.4 (kN)

表1单次测量值

其算术平均值:

$$\overline{F} = \frac{1}{n} \sum_{i=1}^{n} Fi = 200.54(kN)$$

验标准差:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (Fi - \overline{F})^{2}}{n-1}} = 0.18(kN)$$

任意选择 3 台同类型试验机,每台分别在满量程的 20%,50%,80%负荷点进行测试。每点在重复性条件下连续测量 10 次,共得到 9 组测量值,每组测量值分别按上述方法计算得到验标准差,如表 2 所示。

检测点	20%量程	50%量程	80%量程	
単位(kN)	200	500	800	
实验标准差 s _i (kN)	S ₁ :0.18	S ₂ :0.20	S ₃ :0.21	
	S ₄ :0.22	S ₅ :0.19	S ₆ :0.24	
	S ₇ :0.19	S ₈ :0.18	S ₉ :0.23	

表 2 实验标准偏差计算结果

合并样本标准差为:

$$Sp = \sqrt{\frac{1}{m} \sum_{i=1}^{m} s_{j}^{2}} = 0.20(kN)$$

实际测量情况,在重复条件下连续测量 3 次,以该 3 次测量值的算术平均值作为测量结果,可得到:

$$u(\overline{F}) = \frac{S_P}{\sqrt{3}} = \frac{0.20}{\sqrt{3}} = 0.12(kN)$$

2. 输入量 F 的标准不确定度 u(F) 的评定

输入量F的不确定度主要来源于标准测力仪。可根据检定证书给予的相对扩展不确定度、年稳定度评定,即B类方法进行评定。

标准测力仪检定证书给予的相对扩展不确定度 $U_{95}=15\%$,包含因子 k=1.98,年稳定度为 $\pm 0.3\%$,估计为均匀分布,取包舍因子 $k=\sqrt{3}$ 。在测量点 200kN 处,标准不确定度为:

$$u(F_1) = \frac{a}{k}(1000 \times 20\%) = \frac{0.15\%}{1.98}(1000 \times 20\%) = 0.15kN$$

$$u(F_2) = \frac{a}{k}(1000 \times 20\%) = \frac{0.3\%}{\sqrt{3}}(1000 \times 20\%) = 0.35kN$$

$$u(F) = \sqrt{(F) + (F)} = \sqrt{(0.15) + (0.35)} = 0.38kN$$

3. 输入量t的标准不确定度u(t)的评定

输入量t的标准不确定度主要为测量过程中的实验室温度波动,温度计的示值误差可忽略。试验室温度波动不大于 $2\mathbb{C}/h$,故 $a=2\mathbb{C}$ 。

接均匀分布,取
$$k = \sqrt{3}$$
,得标准不确定度为: $u(t) = \frac{a}{\sqrt{3}} = \frac{2^{\circ}C}{\sqrt{3}} = 1.16^{\circ}C$

四、合成标准不确定度评度

1. 灵敏系数

数学模型
$$\Delta F = \overline{F} - F[1 + k(t - t_0)]$$

灵敏系数
$$c_1 = \frac{\partial \Delta F}{\partial \overline{F}} = 1$$
, $c_2 = \frac{\partial \Delta F}{\partial F} = -[1 + k(t - t_0)]$;
$$c_3 = \frac{\partial \Delta F}{\partial t} = -F \cdot k$$
, $c_4 = \frac{\partial \Delta F}{\partial k} = -F(t - t_0)$.

根据 JJG144-1992《标准测力仪检定规程》,检定温度为 15 \mathbb{C} \sim 2 5 \mathbb{C} ,根据 JJG139-1999《拉力、压力和万能试验机检定规程》,测力仪使用温度为 10 \mathbb{C} \sim 3 5 \mathbb{C} ,

取
$$t_0=15$$
 °C , $t=35$ °C , 温度修正系数 k=0.00027/°C ,F=200kN。则
$$c_1=1,\ c_2=-1.0054,\ c_3=-1.0054kN/$$
 °C , $c_4=-4000kN/$ °C 。

2. 标准不确定度汇总表

输入量的标准不确定度汇总于表 3。

表 3 标准不确定度汇总表

标准不确定度分量u(xi)	不确定度来源	标准不确定度	c_{i}	$ c_i \cdot u(x_i)$
$u(\overline{F})$	被检器具的重复 性	0.12kN	1	0.12kN
$u(F) = \sqrt{u(F_1)^2 + u(F_2)^2}$	$u(F_1)$: 证书给予 的不确定度 $u(F_2)$: 证书给予 的年稳定度	0.38kN	-1.0054	0. 38kN
u(t)	温度波动的不确 定度	1.16℃	-0.054kN/℃	0.063kN
u(k)	温度修正系数由 于修约而导致的 不确定度	2. 89 ×10⁻⁵/°C	-4000kN/℃	0.12kN

3. 合成标准不确定度计算

输入量 \overline{F} 、F、t与 k 彼此独立不相关,所以合成标准不确定度可按下式得到:

$$u_{c}^{2}(\Delta F) = \left[\frac{\partial \Delta F}{\partial \overline{F}} \cdot u(\overline{F})\right]^{2} + \left[\frac{\partial \Delta F}{\partial F} \cdot u(F)\right]^{2} + \left[\frac{\partial \Delta F}{\partial t} \cdot u(t)\right]^{2} + \left[\frac{\partial \Delta F}{\partial k} \cdot u(k)\right]^{2}$$
$$= \left[c_{1} \cdot u(\overline{F})\right]^{2} + \left[c_{2} \cdot u(F)\right]^{2} + \left[c_{3} \cdot u(t)\right]^{2} + \left[c_{4} \cdot u(k)\right]^{2}$$

故,
$$u_c(\Delta F) = \sqrt{0.12^2 + 0.38^2 + 0.063^2 + 0.12^2} = 0.42kN$$

五、扩展不确定度的评度

扩展不确定度U为:

$$U = k \cdot u_{c}(\Delta F) = 2 \times 0.42 = 0.84kN$$

在 20%量程处,相对扩展不确定度为:

$$U_{rel} = 0.84 kN/(1000 \times 20\%) = 0.42\%$$

六、扩展不确定度的报告与结论

试验机各测量点测量结果的相对扩展不确定度分别为 20%处:

$$U_{rel} = 0.42\%$$
 , $k = 2$

同理计算出:

50%处:
$$U_{rel} = 0.41\%$$
, $k = 2$

80%处:
$$U_{rel} = 0.40\%$$
, $k = 2$

参考文献

JJG139-2014《拉力、压力和万能试验机》 中国质检出版社 2014年11月第一版 JJG1059.1-2012《测量不确定度评定与表示》 中国质检出版社 2013年2月第一版